Chloro[tris(o-tolyl)phosphine]gold(I)

By Cameron S. W. Harker and Edward R. T. Tiekink*
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, South Australia 5001, Australia

(Received 16 January 1990; accepted 26 February 1990)

Abstract

Au}\left\{\mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{3}\right\} \mathrm{Cl}\right], M_{r}=536 \cdot 8\), monoclinic, $C 2 / c, a=24 \cdot 114$ (2), $b=12 \cdot 305$ (1), $c=15 \cdot 834$ (1) \AA, $\beta=125.07(1)^{\circ}, \quad V=3845(1) \AA^{3}, \quad D_{x}=$ $1: 855 \mathrm{Mg} \mathrm{m}^{-3}$ for $Z=8$, Mo $K \bar{\alpha}$ radiation, $\lambda=$ $0.7107 \AA, \quad \mu=7.820 \mathrm{~mm}^{-1}, \quad F(000)=2064, \quad T=$ 293 (2) K, $R=0.036$ for 2106 observed reflections. The Au atom exists in a linear geometry defined by a Cl atom, $\mathrm{Au}-\mathrm{Cl} 2.281$ (3) \AA, and a P atom, $\mathrm{Au}-\mathrm{P}$ $2 \cdot 243$ (2) A, such that $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ is 179.4 (1) ${ }^{\circ}$. The dihedral angles formed between the three phosphinebound o-tolyl groups are $81 \cdot 5,81 \cdot 1$ and $83 \cdot 3^{\circ}$.

Experimental. The title compound was prepared from the reaction of HAuCl_{4} and tris(o-tolyl)phosphine (Eastman) using the literature method (Al-Saády, McAuliffe, Parish \& Sandbank, 1985). Crystals were obtained from the slow evaporation of an ethanol/ CHCl_{3} solution; m.p. $556-558 \mathrm{~K}$. Enraf-Nonius CAD-4F diffractometer controlled by a PDP8/A computer, graphite-monochromated Mo $K \bar{\alpha}$ radiation; $\omega / 2 \theta$ scan technique. Cell parameters on crystal $0.42 \times 0.15 \times 0.12 \mathrm{~mm}$ by least squares on 25 reflections ($10 \leq \theta \leq 13^{\circ}$) (Boer \& Duisenberg, 1984). Analytical absorption correction applied; max. and min. transmission factors 0.376 and $0 \cdot 159$ (Sheldrick, 1976). Total of 3982 reflections $\left(1.5 \leq \theta \leq 25 \cdot 0^{\circ}\right)$ measured in the range $-28 \leq h \leq$ $28,0 \leq k \leq 14,-18 \leq l \leq 1$. No significant variation in the net intensities of two reference reflections ($\overline{11}, \overline{3}, 3,2 \overline{6} \overline{2}$) measured every 7200 s .3392 unique reflections ($R_{\text {int }} 0.043$) and 2106 satisfied $I \geq 2 \cdot 5 \sigma(I)$. Structure solved by Patterson method, full-matrix least-squares refinement of 218 parameters based on F (Sheldrick, 1976). Anisotropic thermal parameters for non- H atoms and H atoms included in their calculated positions ($\mathrm{C}-\mathrm{H} 0.97 \AA$). At convergence $R=0.036, w R=0.037, w=1.78 /\left[\sigma^{2}(F)+0.0009 F^{2}\right]$,

* Author for correspondence.

0108-2701/90/081546-02\$03.00
$S=1.64,(\Delta / \sigma)_{\max } \leq 0.001,(\Delta \rho)_{\max }=1.43,(\Delta \rho)_{\min }=$ $-1.64 \mathrm{e} \AA^{-3}$; no extinction correction. Scattering factors for $\mathrm{H}, \mathrm{C}, \mathrm{Cl}$ and P given in SHELX76 (Sheldrick, 1976) and those for neutral Au corrected for f^{\prime} and $f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). All calculations on SUN4/280 computer system. Atomic parameters are given in Table 1, selected interatomic parameters in Table $2 \dagger$ and the numbering scheme used is shown in

Abstract

\dagger Lists of structure factors, thermal parameters, H-atom parameters, mean-plane data and all bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52829 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional atomic coordinates and $B_{\text {eq }}$ values (\AA^{2})

	$B_{\text {eq }}=8 \pi^{2} / 3\left(U_{11}+U_{22}+U_{33}\right)$.			
	x	y	z	$B_{\text {eq }}$
Au	0.40854 (2)	$0 \cdot 24209$ (2)	0.43744 (3)	2.97
Cl	0.4729 (1)	$0 \cdot 2401$ (2)	0.6134 (2)	4.07
P	0.3460 (1)	0.2452 (2)	0.2645 (2)	$2 \cdot 70$
C(11)	0.3783 (4)	0.3365 (7)	0.2099 (7)	2.67
$\mathrm{C}(12)$	0.3978 (5)	0.4434 (8)	0.2479 (7)	3.34
C (121)	0.3996 (6)	0.4873 (8)	0.3380 (9)	$5 \cdot 22$
C(13)	0.4164 (5)	0.5108 (8)	$0 \cdot 1980$ (9)	3.96
C(14)	0.4187 (5)	0.4749 (9)	0.1173 (9)	4.57
C(15)	0.4005 (5)	0.3690 (9)	0.0838 (9)	4.61
C(16)	$0 \cdot 3807$ (5)	$0 \cdot 3024$ (8)	0.1305 (7)	3.58
C(21)	0.3404 (4)	$0 \cdot 1132$ (6)	0.2089 (7)	2.64
C(22)	$0 \cdot 3992$ (5)	0.0516 (7)	0.2418 (8)	3.53
C(221)	0.4691 (5)	0.0836 (9)	0.3331 (9)	4.62
C(23)	$0 \cdot 3910$ (6)	-0.0461 (7)	$0 \cdot 1921$ (8)	4.37
C(24)	$0 \cdot 3285$ (6)	-0.0843 (7)	0.1119 (8)	4.03
C(25)	$0 \cdot 2719$ (6)	-0.0238 (8)	0.0790 (9)	4.19
C(26)	0.2773 (5)	0.0734 (7)	0.1261 (8)	3.62
C(31)	0.2582 (4)	0.2894 (7)	0.2035 (7)	2.56
C(32)	0.2188 (5)	$0 \cdot 2482$ (7)	0.2365 (8)	3.75
C(321)	$0 \cdot 2460$ (5)	0.1674 (9)	0.3226 (9)	5.15
C(33)	0.1533 (4)	$0 \cdot 2858$ (8)	$0 \cdot 1859$ (7)	3.67
C(34)	0.1258 (5)	0.3596 (8)	0.1070 (8)	3.69
C(35)	0.1636 (5)	0.4005 (8)	0.0753 (8)	3.60
C(36)	$0 \cdot 2303$ (5)	$0 \cdot 3634$ (7)	0.1234 (7)	3.27

© 1990 International Union of Crystallography

Table 2. Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Au}-\mathrm{Cl}$	$2.281(3)$	$\mathrm{Au}-\mathbf{P}$	$2.243(2)$
$\mathrm{P}-\mathrm{C}(11)$	$1.840(9)$	$\mathrm{P}-\mathrm{C}(21)$	$1.815(8)$
$\mathrm{P}-\mathrm{C}(31)$	$1.835(8)$		
$\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$			
$\mathrm{Au}-\mathrm{P}-\mathrm{C}(21)$	$179.4(1)$	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(11)$	$114.5(3)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$104 \cdot 7(3)$	$\mathrm{Au}-\mathrm{P}-\mathrm{C}(31)$	$114 \cdot 2(3)$
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$105 \cdot 6(4)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$104 \cdot 1(4)$

Fig. 1. Molecular structure and numbering scheme for $\left[\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{P}\right) \mathrm{AuCl}\right]$ (Johnson, 1971).

Fig. 1 which is drawn with ORTEP (Johnson, 1971) with 25% probability ellipsoids.

Related literature. As expected from cone-angle considerations (Tolman, 1977), the $\mathrm{Au}-\mathrm{P}$ and $\mathrm{Au}-\mathrm{Cl}$ bond distances in $\left[(o \text {-tolyl })_{3} \mathrm{PAuCl}\right]$ with a cone angle of 194° are comparable to those found for [(cyclohexyl) $\left.{ }_{3} \mathrm{PAuCl}\right]$ of $2 \cdot 242$ (4) and $2 \cdot 279(5) \AA$ with a cone angle of 170° (Muir, Muir, Pulgar, Jones \& Sheldrick, 1985). In contrast, [(Et) $\left.)_{3} \mathrm{PAuCl}\right]$, with a cone angle of 132°, has $\mathrm{Au}-\mathrm{P}$ and $\mathrm{Au}-\mathrm{Cl}$ of $2 \cdot 232$ (9) and $2 \cdot 305(8) \AA$, respectively (Tiekink, 1989).

The Australian Research Council is thanked for support.

References

Al-Sáddy, A. K., McAuliffe, C. A., Parish, R. V. \& Sandbank, J. A. (1985). Inorg. Synth. 23, 191-194.

Boer, J. L. de \& Duisenberg, A. J. M. (1984). Enraf-Nonius CAD-4F diffractometer software update. February 1984. Groningen and Utrecht, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Muir, J. A., Mutr, M. M., Pulgar, L. B., Jones, P. G. \& Sheldrick, G. M. (1985). Acta Cryst. C41, 1174-1176
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England
Tiekink, E. R. T. (1989). Acta Cryst. C45, 1233-1234.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Structure of a New Iodobismuthate: Tetra(n-butyl)ammonium 1,2;1,2;1,2;2,3;2,3;2,3-Hexa- μ-iodo-1,1,1,3,3,3-hexaiodotribismuthate(III) (3:1)

By Urs Geiser,* Erica Wade, Hau H. Wang and Jack M. Williams*
Chemistry and Materials Science Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 4 October 1989; accepted 26 February 1990)

Abstract

C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)_{3} \mathrm{Bi}_{3} \mathrm{I}_{12}, \quad M_{r}=2877 \cdot 20\), monoclinic, $\quad P 2_{1} / c, \quad a=17.796$ (4),$\quad b=20.565$ (6), $\quad c=$ $23 \cdot 414$ (8) $\AA, \quad \beta=100 \cdot 25$ (2) ${ }^{\circ}, V=8432$ (4) $\AA^{3}, Z=$ $4, D_{x}=2.266 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=$ $10 \cdot 61 \mathrm{~mm}^{-1}, F(000)=5208$, room temperature, final $R=0.140$ for 4850 independent observed reflections with $F_{o}>3 \sigma\left(F_{o}\right)$. The compound contains a novel $\mathrm{Bi}_{3} \mathrm{I}_{12}^{3-}$ anion, consisting of three face-sharing [BiI_{6}] octahedra. The bridging $\mathrm{Bi}-\mathrm{I}$ bond lengths average $3.078 \AA$ (inner Bi atom) and $3 \cdot 330 \AA$ (outer Bi atoms), whereas the bonds to terminal I atoms aver-

[^0]0108-2701/90/081547-03\$03.00
age $2 \cdot 910 \AA$. Bond-length constraints were applied to the refinement of the tetrabutylammonium cation C atoms.

Experimental. Orange, plate-like needles were prepared from equimolar amounts of $\left[\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right] \mathrm{I}$ and BiI_{3}, dissolved in hot absolute ethanol, by slow cooling. One of the largest available crystals $(0.008 \times$ $0.13 \times 0.59 \mathrm{~mm}$) was mounted on a Nicolet $P 3 / F$ four-circle diffractometer with graphite monochromator. ω-scan data, 0.9° width, $2-8^{\circ} \min ^{-1}, 2 \theta$ $<45^{\circ},(\sin \theta) / \lambda<0.538 \AA^{-1}$ (no observed diffracted intensity beyond that), $h: 0$ to $19, k: 0$ to $22, l:-25$ (c) 1990 International Union of Crystallography

[^0]: * Authors to whom correspondence may be addressed.

